Merchandise Description
Everlasting Metal Producing Co.,Ltd (PMC) is your quality supplier and processor of specialty seamless metal pipe, high temperature carbon steel grades, low temperature supplies – in a number of product forms, which includes metal plate, bar, tubular and structural kinds. In the earlier, we have been assiduously surpassing our ambitions phase by step in the carbon steel business. Over the many years, perseverance and ardor in our work served us to carve out a route of achievement for us and our venerated consumers.With condition-of-the-art producing processes, modern systems,and proficient solutions, we think about: supplying very best top quality-ideal in course items-at the most advantageous charges, as our forte.
Sizes:
Out Diameter: 1.315″- 20″
Wall Thickness: .133″-.five hundred”
Length:R1(group1),R2(group2),R3(group3)
Components & Grades:
Casing: J55, K55, N80, L80, P110
Application:
oil well extracting
borehole
borewell
Kinds:
Seamless Casing
ERW Casing
Connections:
P(Basic Conclude)
STC (short threads)
LTC (prolonged threads)
BTC (buttress threads)
High quality fuel-limited connectors
Non-upset finishes (NUE)
Exterior upset finishes (EUE)
Top quality gas-tight connectors
Others unique connectors
Chemical compositions of casing pipe
Standard | Quality | Chemical compositions(%) | |||||||||
API SPEC 5CT | J55 | C | Si | Mn | P | S | Cr | Ni | Cu | Mo | V |
K55 | .34~.39 | .20~.35 | 1.25~1.fifty | ≤0.571 | ≤0.015 | ≤0.15 | ≤0.20 | ≤0.20 | / | / | |
N80 | .34~.38 | .20~.35 | 1.45~1.70 | ≤0.571 | ≤0.015 | ≤0.fifteen | / | / | / | .11~.sixteen | |
L80 | .15~.22 | ≤1.00 | .25~1.00 | ≤0.571 | ≤0.571 | twelve.~fourteen. | ≤0.20 | ≤0.20 | / | / | |
P110 | .26~.395 | .seventeen~.37 | .40~.70 | ≤0.571 | ≤0.571 | .eighty~1.ten | ≤0.20 | ≤0.twenty | .15~.25 | ≤0.08 |
Mechanical qualities of casing pipe
Grade | Variety |
Complete elongation beneath load (%) |
Produce strength (min)Mpa |
Produce strength (max)Mpa |
Tensile strength min Mpa |
Hardness Max (HRC) |
Hardness Max (HBW) |
J55 | – | .5 | 379 | 552 | 517 | – | – |
K55 | – | .five | 379 | 552 | 655 | – | – |
N80 | one | .5 | 552 | 758 | 689 | – | – |
N80 | Q | .five | 552 | 758 | 689 | – | – |
L80 | 1 | .five | 552 | 655 | 655 | 23 | 241 |
L80 | 9Cr | .5 | 552 | 655 | 655 | 23 | 241 |
L80 | 13Cr | .5 | 552 | 655 | 655 | 23 | 241 |
C90 | – | .five | 621 | 724 | 689 | 25.4 | 255 |
C95 | – | .5 | 655 | 758 | 724 | – | – |
T95 | – | .five | 655 | 758 | 724 | twenty five.four | 255 |
P110 | – | .six | 758 | 965 | 862 | – | – |
Q125 | All | .sixty five | 862 | 1034 | 931 | – | – |
Casing Pipe Manufacturing Approach:
Steel ingot heating → hydraulic punching → reheating → extension → periodic rolling → reheating → sizing → cooling → straightening → pipe chopping → inspection
one. An annular heating CZPT is required for ingot heating
2. Punching and reheating with hydraulic press
three. The oil casing plant employs a two-roller CZPT plate extension device for extension
four. Re-use a disc heating CZPT for periodic rolling, and use a non-entry CZPT for reheating, cooling, straightening, pipe slicing, and inspection.
Color Codes for API 5CT Casing and Tubing:
PMC has always inculcated and followed CZPT high quality requirements for all of its producing processes. All the components utilised by PMC are of quality high quality and compatible with most recent machineries and production systems. The complex and commercial quality tips of PMC are established to higher standards. A good quality manage team supervises quality assurance and manage aspects alongside with the total method program by recognizing and associating with the top quality circle. The quality control assessments are conducted often in order to maintain a steady and uniform solution good quality.
Checks of Oil Casing & Tubing
Chemical Component Analysis
Mechanical Homes – Elongation, Produce Energy, Ultimate Tensile Power
Technological Qualities – DWT Test, Effect Check, Blow Check, Flattening Check
X-ray Examination
Exterior Measurement Inspection
Hydrostatic Examination
FAQ
Q1. What are your company’s main merchandise ?
A2: Our principal products are carbon steel seamless pipe, pipe fittings(flange,elbow, tee, reducer,nipple and many others.), and sheets, pipes, coils, strips, bars and channels.
Q2. What are the positive aspects of your firm ?
A2: Giving greatest high quality-very best in course merchandise-at the most advantageous prices, as our forte.
Q3. How do you handle quality ?
A3: A quality manage crew supervises top quality assurance and management factors along with the entire method method by recognizing and associating with the top quality circle. The high quality management checks are conducted routinely in purchase to sustain a regular and uniform merchandise good quality.
This fall. How many coutries you currently exported ?
A4: Exported to much more than 50 countries mainly from Middle East, Russia, United States, Canada, Italy, Germany, Australia, Egypt, Japan, Indonesia, Bangladesh, Turkey, India, and so on.
Q5. Can you provide sample ? Do you assistance OEM ?
A5: Yes. Small samples in shop can be provided for free. Personalized samples will get about 2-3days.
Q6: What is your payment conditions ?
A6: By T/T(30% deposit in progress, harmony 70% ahead of shipment),, L/C right after sight thirty~120 times. Western Union, Paypal, or Trade On the web.
US $46 / kg | |
1 kg (Min. Order) |
###
After-sales Service: | 24 Hours Online Service |
---|---|
Warranty: | 24 Months |
Type: | Seamless |
Technique: | Hot Rolled |
Material: | Carbon Steel |
Surface Treatment: | Black |
###
Samples: |
US$ 1/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
Standard | Grade | Chemical compositions(%) | |||||||||
API SPEC 5CT | J55 | C | Si | Mn | P | S | Cr | Ni | Cu | Mo | V |
K55 | 0.34~0.39 | 0.20~0.35 | 1.25~1.50 | ≤0.020 | ≤0.015 | ≤0.15 | ≤0.20 | ≤0.20 | / | / | |
N80 | 0.34~0.38 | 0.20~0.35 | 1.45~1.70 | ≤0.020 | ≤0.015 | ≤0.15 | / | / | / | 0.11~0.16 | |
L80 | 0.15~0.22 | ≤1.00 | 0.25~1.00 | ≤0.020 | ≤0.010 | 12.0~14.0 | ≤0.20 | ≤0.20 | / | / | |
P110 | 0.26~0.395 | 0.17~0.37 | 0.40~0.70 | ≤0.020 | ≤0.010 | 0.80~1.10 | ≤0.20 | ≤0.20 | 0.15~0.25 | ≤0.08 |
###
Grade | Type |
Total elongation under load (%) |
Yield strength (min)Mpa |
Yield strength (max)Mpa |
Tensile strength min Mpa |
Hardness Max (HRC) |
Hardness Max (HBW) |
J55 | – | 0.5 | 379 | 552 | 517 | – | – |
K55 | – | 0.5 | 379 | 552 | 655 | – | – |
N80 | 1 | 0.5 | 552 | 758 | 689 | – | – |
N80 | Q | 0.5 | 552 | 758 | 689 | – | – |
L80 | 1 | 0.5 | 552 | 655 | 655 | 23 | 241 |
L80 | 9Cr | 0.5 | 552 | 655 | 655 | 23 | 241 |
L80 | 13Cr | 0.5 | 552 | 655 | 655 | 23 | 241 |
C90 | – | 0.5 | 621 | 724 | 689 | 25.4 | 255 |
C95 | – | 0.5 | 655 | 758 | 724 | – | – |
T95 | – | 0.5 | 655 | 758 | 724 | 25.4 | 255 |
P110 | – | 0.6 | 758 | 965 | 862 | – | – |
Q125 | All | 0.65 | 862 | 1034 | 931 | – | – |
US $46 / kg | |
1 kg (Min. Order) |
###
After-sales Service: | 24 Hours Online Service |
---|---|
Warranty: | 24 Months |
Type: | Seamless |
Technique: | Hot Rolled |
Material: | Carbon Steel |
Surface Treatment: | Black |
###
Samples: |
US$ 1/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
Standard | Grade | Chemical compositions(%) | |||||||||
API SPEC 5CT | J55 | C | Si | Mn | P | S | Cr | Ni | Cu | Mo | V |
K55 | 0.34~0.39 | 0.20~0.35 | 1.25~1.50 | ≤0.020 | ≤0.015 | ≤0.15 | ≤0.20 | ≤0.20 | / | / | |
N80 | 0.34~0.38 | 0.20~0.35 | 1.45~1.70 | ≤0.020 | ≤0.015 | ≤0.15 | / | / | / | 0.11~0.16 | |
L80 | 0.15~0.22 | ≤1.00 | 0.25~1.00 | ≤0.020 | ≤0.010 | 12.0~14.0 | ≤0.20 | ≤0.20 | / | / | |
P110 | 0.26~0.395 | 0.17~0.37 | 0.40~0.70 | ≤0.020 | ≤0.010 | 0.80~1.10 | ≤0.20 | ≤0.20 | 0.15~0.25 | ≤0.08 |
###
Grade | Type |
Total elongation under load (%) |
Yield strength (min)Mpa |
Yield strength (max)Mpa |
Tensile strength min Mpa |
Hardness Max (HRC) |
Hardness Max (HBW) |
J55 | – | 0.5 | 379 | 552 | 517 | – | – |
K55 | – | 0.5 | 379 | 552 | 655 | – | – |
N80 | 1 | 0.5 | 552 | 758 | 689 | – | – |
N80 | Q | 0.5 | 552 | 758 | 689 | – | – |
L80 | 1 | 0.5 | 552 | 655 | 655 | 23 | 241 |
L80 | 9Cr | 0.5 | 552 | 655 | 655 | 23 | 241 |
L80 | 13Cr | 0.5 | 552 | 655 | 655 | 23 | 241 |
C90 | – | 0.5 | 621 | 724 | 689 | 25.4 | 255 |
C95 | – | 0.5 | 655 | 758 | 724 | – | – |
T95 | – | 0.5 | 655 | 758 | 724 | 25.4 | 255 |
P110 | – | 0.6 | 758 | 965 | 862 | – | – |
Q125 | All | 0.65 | 862 | 1034 | 931 | – | – |
Functions and Modifications of Couplings
A coupling is a mechanical device that connects two shafts and transmits power. Its main purpose is to join two rotating pieces of equipment together, and it can also be used to allow some end movement or misalignment. There are many different types of couplings, each serving a specific purpose.
Functions
Functions of coupling are useful tools to study the dynamical interaction of systems. These functions have a wide range of applications, ranging from electrochemical processes to climate processes. The research being conducted on these functions is highly interdisciplinary, and experts from different fields are contributing to this issue. As such, this issue will be of interest to scientists and engineers in many fields, including electrical engineering, physics, and mathematics.
To ensure the proper coupling of data, coupling software must perform many essential functions. These include time interpolation and timing, and data exchange between the appropriate nodes. It should also guarantee that the time step of each model is divisible by the data exchange interval. This will ensure that the data exchange occurs at the proper times.
In addition to transferring power, couplings are also used in machinery. In general, couplings are used to join two rotating pieces. However, they can also have other functions, including compensating for misalignment, dampening axial motion, and absorbing shock. These functions determine the coupling type required.
The coupling strength can also be varied. For example, the strength of the coupling can change from negative to positive. This can affect the mode splitting width. Additionally, coupling strength is affected by fabrication imperfections. The strength of coupling can be controlled with laser non-thermal oxidation and water micro-infiltration, but these methods have limitations and are not reversible. Thus, the precise control of coupling strength remains a major challenge.
Applications
Couplings transmit power from a driver to the driven piece of equipment. The driver can be an electric motor, steam turbine, gearbox, fan, or pump. A coupling is often the weak link in a pump assembly, but replacing it is less expensive than replacing a sheared shaft.
Coupling functions have wide applications, including biomedical and electrical engineering. In this book, we review some of the most important developments and applications of coupling functions in these fields. We also discuss the future of the field and the implications of these discoveries. This is a comprehensive review of recent advances in coupling functions, and will help guide future research.
Adaptable couplings are another type of coupling. They are made up of a male and female spline in a polymeric material. They can be mounted using traditional keys, keyways, or taper bushings. For applications that require reversal, however, keyless couplings are preferable. Consider your process speed, maximum load capacity, and torque when choosing an adaptable coupling.
Coupling reactions are also used to make pharmaceutical products. These chemical reactions usually involve the joining of two chemical species. In most cases, a metal catalyst is used. The Ullmann reaction, for instance, is an important example of a hetero-coupling reaction. This reaction involves an organic halide with an organometallic compound. The result is a compound with the general formula R-M-R. Another important coupling reaction involves the Suzuki coupling, which unites two chemical species.
In engineering, couplings are mechanical devices that connect two shafts. Couplings are important because they enable the power to be transmitted from one end to the other without allowing a shaft to separate during operation. They also reduce maintenance time. Proper selection, installation, and maintenance, will reduce the amount of time needed to repair a coupling.
Maintenance
Maintenance of couplings is an important part of the lifecycle of your equipment. It’s important to ensure proper alignment and lubrication to keep them running smoothly. Inspecting your equipment for signs of wear can help you identify problems before they cause downtime. For instance, improper alignment can lead to uneven wear of the coupling’s hubs and grids. It can also cause the coupling to bind when you rotate the shaft manually. Proper maintenance will extend the life of your coupling.
Couplings should be inspected frequently and thoroughly. Inspections should go beyond alignment checks to identify problems and recommend appropriate repairs or replacements. Proper lubrication is important to protect the coupling from damage and can be easily identified using thermography or vibration analysis. In addition to lubrication, a coupling that lacks lubrication may require gaskets or sealing rings.
Proper maintenance of couplings will extend the life of the coupling by minimizing the likelihood of breakdowns. Proper maintenance will help you save money and time on repairs. A well-maintained coupling can be a valuable asset for your equipment and can increase productivity. By following the recommendations provided by your manufacturer, you can make sure your equipment is operating at peak performance.
Proper alignment and maintenance are critical for flexible couplings. Proper coupling alignment will maximize the life of your equipment. If you have a poorly aligned coupling, it may cause other components to fail. In some cases, this could result in costly downtime and increased costs for the company.
Proper maintenance of couplings should be done regularly to minimize costs and prevent downtime. Performing periodic inspections and lubrication will help you keep your equipment in top working order. In addition to the alignment and lubrication, you should also inspect the inside components for wear and alignment issues. If your coupling’s lubrication is not sufficient, it may lead to hardening and cracking. In addition, it’s possible to develop leaks that could cause damage.
Modifications
The aim of this paper is to investigate the effects of coupling modifications. It shows that such modifications can adversely affect the performance of the coupling mechanism. Moreover, the modifications can be predicted using chemical physics methods. The results presented here are not exhaustive and further research is needed to understand the effects of such coupling modifications.
The modifications to coupling involve nonlinear structural modifications. Four examples of such modifications are presented. Each is illustrated with example applications. Then, the results are verified through experimental and simulated case studies. The proposed methods are applicable to large and complex structures. They are applicable to a variety of engineering systems, including nonlinear systems.
editor by czh 2023-01-20